Our lab is interested in understanding the molecular mechanisms by which chemokines activate GPCR receptors and bind sulfated glycosaminoglycans (GAGs) to orchestrate in vivo leukocyte recruitment to the infected tissue and activate leukocytes for microbial killing at the target site. Precise spatiotemporal control of these processes is essential to mount an effective defense. Impaired recruitment and/or impaired activation will result in incomplete resolution, whereas uncontrolled recruitment and/or premature or sustained activation will result in destruction of healthy tissue and disease. It is now well established that most, if not all, chemokines exist as monomers and dimers, but the molecular mechanisms by which chemokines and monomer-dimer equilibrium mediate leukocyte function remain unknown. Using mouse models, cellular assays, and engineered monomers and dimers, we have shown that both monomers and dimers have differential activities and recruit neutrophils in a highly differential manner, that monomer-dimer equilibrium regulates recruitment, that monomers and dimers differentially bind in vivo GAGs, and that the role of GAG interactions is highly tissue-specific.
Publications/Creative Works
Click here to search for this faculty member's publications on PubMed.
Important Disclaimer: The responsibility for the accuracy of the information contained on these pages lies with the authors and user providing such information.