"Mechano-medicine" is an emerging concept that tries to prevent and cure diseases by combining mechanobiology with biomedicine. The Chen lab focuses its research on the interface of mechanobiology, vascular biology and biomedicine. We use multidisciplinary approaches to 1) understand the mechanobiology of cells and molecules, including force-regulated molecular binding and conformational change, cell adhesion and mechano-signaling, in the vascular system; 2) shed light on the mechanobiology-related pathogenesis of vascular dysfunctions like thrombosis, atherosclerosis and cancer metastasis; and 3) eventually, develop mechanobiology-inspired therapeutics and research/diagnostic tools abiding the concept of ‘mechano-medicine’. The approaches of Chen lab can be summarized in seven M’s: Mechanics (investigating the mechanobiology of cell physiology and pathology); Microscopy (combining super-resolution imaging with force spectroscopy); Microfabrication (manufacturing microfluidic devices to realize high-throughput experimentation and develop mechanobiology-based diagnostic tools); Molecular engineering (designing and making protein mutants to understand disease pathology and explore potential therapeutic strategies); Molecular dynamics simulation (via collaboration, understanding the mechanisms underlying mechanobiological molecular behaviors); Mouse models (use transgenic mice to create disease models); and finally Mechano-medicine (designing and testing new therapeutics).
Publications/Creative Works
Click here to search for this faculty member's publications on PubMed.
Affiliations
Research Consortia
Gulf Coast Cluster for Cellular and Molecular Biophysics
Important Disclaimer: The responsibility for the accuracy of the information contained on these pages lies with the authors and user providing such information.