My graduate and postgraduate education gave me a broad and deep background in clinical medicine, physiology and pharmacology. My subsequent 20 years in Academia and Industry gave me a broad and deep set of skills and knowledge ranging from basic research and therapeutic target identification to preclinical and clinical drug development. On the academic track, as postdoctoral fellow at the William Harvey Research Institute, my work, under the supervision of Nobel Laureate Sir John Vane, focused on basic research on the role of NO and oxidative pathways in the pathogenesis of critical illness. As Research Director of the Division of Critical Care at Children's Hospital Medical Center in Cincinnati, and later as Professor at UMDNJ/Newark (now part of Rutgers), I expanded my scope to study molecular pathways of oxidative and nitrosative stress, and their applications to a diverse set of pathophysiological conditions including circulatory shock, diabetes, acute lung injury, cardiac diseases, aging, neuroinjury, and various acute and chronic inflammation. For the last 10 years, at the University of Texas Medical Branch, my laboratory integrates contemporary methods of cell biology, pharmacology, and molecular biology with cell-based high-throughput screening approaches and with in vivo models of disease. As PI or co-Investigator on multiple grants funded by the NIH and other agencies, I have discovered multiple novel pathophysiological pathways and processes, some of which became targets for subsequent drug development. Over the last decade, I became an internationally recognized authority in the field of hydrogen sulfide biology and I am currently involved in a variety of studies on the role of hydrogen sulfide in the regulation of mitochondrial dysfunction in various pathophysiological conditions including circulatory shock, vascular dysfunction and cancer. In parallel with my academic work, on the industry track, as Chief Scientific Officer of several successive biotech companies, I led multiple project teams focused on target identification, creation and pharmacological characterization of first-in-class drug development candidates, and their progression through preclinical development into proof-of-concept clinical trials. This work involved diverse targets, including key checkpoints in intracellular signaling and cell death pathways (e.g. PARP1, SHIP1), free radical/oxidant processes, cell membrane receptors (e.g. adenosine receptors) and gaseous transmitters (nitric oxide, hydrogen sulfide). The therapeutic applications of these pathways include inflammation, vascular disease, cancer, lung diseases, ophthalmologic indications, and various forms of critical illness. From an administrative standpoint, I have successfully administered R&D groups of various size, including complex, multidisciplinary research projects, often involving multiple geographical locations. I have published extensively; have received numerous awards (including the Novartis Award of the British Pharmacological Society and the Pharmacia Award of ASPET); have received significant grant funding, including continuous funding from the NIH for the last 20 years. My publications are highly cited in the literature (over 50,000 citations). With an Hirsch-Index of 115, I am listed as one of the top 10 most highly cited scientists in the field of Pharmacology.
Publications/Creative Works
Click here to search for this faculty member's publications on PubMed.
Affiliations
Research Consortia
GCC Consortium for Antimicrobial Resistance (GCC AMR)
Important Disclaimer: The responsibility for the accuracy of the information contained on these pages lies with the authors and user providing such information.