Within the body of a healthy adult, microbial cells are estimated to outnumber human cells by a factor of ten to one. The total number of genes in the human microbiome may exceed the total number of human genes by a factor of 100 to 1. These communities are largely unstudied, leaving unknown their influence upon human health. To take advantage of recent technological advances and to develop new ones, the NIH Roadmap initiated the Human Microbiome Project (HMP) with the mission of generating resources enabling characterization of the human microbiota and analysis of its role in human health and disease. Traditional microbiology has focused on the study of individual isolated species. However, most organisms (>95%) have never been successfully cultured. Advances in DNA sequencing technologies have created the ability to examine microbial communities, including uncultivable organisms. The metagenomic approach allows analysis of genetic material derived from complete microbial communities harvested from natural environments. Knowledge of how the microbiota impact and/or respond to disease is key for developing treatments that can reduce symptoms or eliminate infectious disease. Furthermore, microbiome-associated diagnostics may be more sensitive for detecting certain diseases and/or predicting susceptibility to others so that appropriate precautions can be made (for example, taking a probiotic or antibiotic when traveling when it's known that an individual is highly susceptible to travelers' diarrhea or Norwalk virus infection). Over the past 3 years we, along with collaborators in the Department of Molecular Virology and Microbiology (MVM) and the Human Genome Sequencing Center have been pursuing diverse projects in metagenomics and microbiome research. To maintain our position as leaders in this field, and to best orient ourselves for existing and future funding opportunities, BCM has created the Alkek Center for Metagenomics and Microbiome Research (CMMR), which is directed by Dr. Petrosino.
Publications/Creative Works
Click here to search for this faculty member's publications on PubMed.
Affiliations
Research Consortia
GCC Consortium for Antimicrobial Resistance (GCC AMR)
Training Grants
Molecular Basis of Infectious Diseases Training Grant
Antimicrobial Resistance Training Program in the Texas Medical Center (AMR-TPT)
Important Disclaimer: The responsibility for the accuracy of the information contained on these pages lies with the authors and user providing such information.