Our lab is interested in the mechanism by which proteins respond to mechanical forces. A large fraction of the proteins have structural and thus also mechanical functions. Examples include muscle proteins (e.g. titin), cytoskeletal proteins (e.g. spectrin) and proteins of the extracellular matrix (e.g. fibronectin). However, not much is known how single proteins respond to mechanical forces. Do they behave as simple springs or do they display more complex features? Do they share common set of design principles and mechanical fingerprints? We are currently studying the mechanical properties of elastin (an abundant component of connective tissue), polycystin-1 (a cell membrane receptor found mainly in kidney tubules) and projectin and twitchin (titin-like protein found in Drosophila and C. elegans). We hypothesize that these proteins function as a mechanical sensors that regulates several processes, including cell growth and tissue morphogenesis. We are testing this hypothesis by directly measuring their mechanical properties using novel Atomic Force Microscopy (AFM) techniques that are capable of tracking forced-induced conformational changes in single molecules.
Publications/Creative Works
Click here to search for this faculty member's publications on PubMed.
Important Disclaimer: The responsibility for the accuracy of the information contained on these pages lies with the authors and user providing such information.